EOS-MLS and NDACC lidar temperature comparisons over the period September 2004 – July 2006

Tao Li¹, <u>Thierry Leblanc¹</u>, I. Stuart McDermid¹, Michael Schwartz and the MLS team²

> ¹Jet Propulsion Laboratory California Institute of Technology Table Mountain Facility Wrightwood, CA 92397

² Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109

MLS dataset

- 1. Version 1.5!
- 2. Each profile retrieved every 15 s, with horizontal resolution of 165 km and vertical resolution of 3 km or more

Lidar dataset

- 1. NDACC: Network for the Detection of Atmospheric Composition Change, 10 temperature lidars in network, 5 presented here.
- 2. Rayleigh and N₂ vibrational Raman backscattering by atmosphere
- 3. Temperature retrieved from density using 1-point tie-on at top of profile and downward integration of hydrostatic balance
- 4. Each profile retrieved for 2- to 6-hour integrated measurements, and 75- to 300-m vertical resolution, depending on NDACC station

Other datasets

- 1. NCEP operational analysis interpolated at JPL lidar location, and time of lidar measurement
- 2. NCEP-NCAR Re-Analysis interpolated at JPL lidar location, and time of lidar measurement
- 3. Hilo Radiosonde profiles within 6 hours of JPL-MLO lidar measurement

The NDACC temperature Lidar stations

JPL TMF lidar station:

- Table Mountain, California

- Latitude: 34.4°N

- Longitude: 117.7°W

- Elevation: 2285 m

JPL MLO Lidar station:

- Mauna Loa, Hawaii

- Latitude: 19.5°N

- Longitude: 204.4°W

- Elevation: 3400 m

CNRS OHP lidar station:

- Haute-Provence, France

- Latitude: 44°N

- Longitude: 6°W

- Elevation: 679 m

- PI (T): Alain Hauchecorne

Ny-Alesund lidar station (AWI):

-Spitzbergen, Norway

- Latitude: 78.9°N

- Longitude: 11.9°E

- Elevation: 11 m

- PI: Peter Van der Gathen

DWD HOH lidar station

- Hohenpeissenberg, Germany

- Latitude: 47.8°N

- Longitude: 11°E

- Elevation: 1000 m

- PIs: Hans Claude/Wolfgang Steinbrecht

MLS: Individual comparisons with TMF and MLO lidars

Black: lidar profiles Horizontal bars = unsmoothed +/- tot. error

Solid curves = smoothed using MLS kernels

Color: MLS profiles within +/- 6 hours and 500 km

- MLS smoothes out mesospheric temp. inversion layers 1.
- MLS systematically warmer than lidar in the stratopshere 2.
- Time coincidences with MLO not optimized 3.

MLS - TMF lidar (within +/- 6 hours and 400 km)

Blue: MLS Green: MLS-lidar (individual)
Red: lidar Black: MLS-lidar (mean)

Red and blue solid: Standard deviations

Red and blue dotted: Precisions

- 1. TMF lidar systematically 2 K colder than MLS in the stratosphere
- 2. Excellent agreement between 2 hPa and 0.07 hPa
- 3. Large Warm lidar bias in upper mesosphere

Comparisons MLS - TMF lidar (temperature)

MLS – NCEP operational analysis at TMF

Blue: MLS Green: MLS-lidar (individual) Red and blue solid: Standard deviations

Red: NCEP Black: MLS-lidar (mean) Red and blue dotted: Precisions

- 1. MLS systematically warmer than NCEP in the stratosphere
- 2. Systematic bias decrease if MLS profile shifted up (2-3% pressure)

MLS – NCEP/NCAR Re-Analysis at TMF

Blue: MLS Green: MLS-lidar (individual) Red and blue solid: Standard deviations

- 1. MLS 1-2 K warmer than NCEP/NCAR re-analysis in the stratosphere
- 2. MLS colder than NCEP/NCAR re-analysis in the upper troposphere
- 3. Systematic bias is reduced if MLS shifted up (2-3% pressure)

MLS - Mauna Loa lidar (within +/- 6 hours and 400 km)

Blue: MLS Green: MLS-lidar (individual) Red and blue solid: Standard deviations
Red: lidar Black: MLS-lidar (mean) Red and blue dotted: Precisions

- 1. MLO lidar systematically 1-2 K colder than MLS in the stratosphere
- 2. MLO lidar systematically 1-4 K warmer than MLS in the mesosphere
- 3. Large warm lidar bias in upper mesosphere

Comparisons MLS - MLO lidar (temperature)

MLS – NCEP operational analysis at MLO

Blue: MLS Green: MLS-lidar (individual) Red and blue solid: Standard deviations Red: NCEP Black: MLS-lidar (mean) Red and blue dotted: Precisions

1. MLS systematically warmer than NCEP in the stratosphere

-20

220 240

Temperature (K)

260

200

2. Systematic bias decrease if MLS profile shifted up (2-3% pressure)

Temperature difference(K)

10

-10

Temperature difference(%)

20

-20

MLS - NCEP/NCAR Re-Analysis at MLO

Blue: MLS Green: MLS-lidar (individual) Red and blue solid: Standard deviations

Red: NCEP Black: MLS-lidar (mean) Red and blue dotted: Precisions

- 1. MLS 1-2 K warmer than NCEP/NCAR re-analysis in the stratosphere
- 2. MLS colder than NCEP/NCAR re-analysis in the upper troposphere
- 3. Systematic bias is reduced if MLS shifted up (2-3% pressure)

MLS – Hilo Radiosondes (60 km east of Mauna Loa)

Blue: MLS Green: MLS-lidar (individual) Red and blue solid: Standard deviations

Red: RadioSonde Black: MLS-lidar (mean) Red and blue dotted: Precisions

- 1. MLS 1-2 K warmer than radiosondes in the lower stratosphere
- 2. MLS colder than radiosondes in the upper troposphere
- 3. Systematic bias is reduced if MLS shifted up (2-3% pressure)

MLS - Haute-Provence (France) lidar (within +/- 6 hours and 400 km)

Blue: MLS Green: MLS-lidar (individual) Red and blue solid: Standard deviations Red: lidar Black: MLS-lidar (mean) Red and blue dotted: Precisions

- 1. OHP lidar systematically 1-2 K colder than MLS in the stratosphere
- 2. OHP lidar 2-4 K warmer than MLS in the mesosphere
- 3. Bias reduced if MLS profiles shifted up (2-3% pressure)

MLS - Hohenpeissenberg (Germany) lidar (within +/- 6 hours and 400 km)

Blue: MLS Green: MLS-lidar (individual)
Red: lidar Black: MLS-lidar (mean)

Red and blue solid: Standard deviations

Black: MLS-lidar (mean) Red and blue dotted: Precisions

- 1. HOH lidar systematically 1-2 K colder than MLS in the stratosphere
- 2. OHP lidar 3 K warmer than MLS in lower mesosphere
- 3. Bias reduced if MLS profiles shifted up (2-3% pressure)

MLS - Ny-Alesund (Spitzbergen) lidar (within +/- 6 hours and 400 km)

Blue: MLS Green: MLS-lidar (individual) Red and blue solid: Standard deviations

Red: lidar Black: MLS-lidar (mean) Red and blue dotted: Precisions

- 1. Differences remain well below uncertainties and natural variability
- 2. Poor statistics
- 3. New version and updated lidar temperature dataset expected shortly

Conclusion

All comparisons shown here seem to point towards a well defined pattern of systematic biases:

- 1. MLS v5.1 seems to be 1-3 K too warm in the stratosphere, 1-2 K too cold in the upper troposphere and 2-4 K too cold in the mesosphere
- 2. Observed biases are consistent with a slightly offset pressure registration (MLS shifted down?).
- 3. An upward shift of the MLS profiles (2-3% in pressure) reduces significantly the observed differences with all other instruments and models.

Future plans:

- Use new MLS version 2!
- Extend comparisons to TES and HIRDLS datasets when available
- Extend Aura-to-model comparisons to the entire globe, and to both NCEP and ECMWF models